If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+2x=50
We move all terms to the left:
10x^2+2x-(50)=0
a = 10; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·10·(-50)
Δ = 2004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2004}=\sqrt{4*501}=\sqrt{4}*\sqrt{501}=2\sqrt{501}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{501}}{2*10}=\frac{-2-2\sqrt{501}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{501}}{2*10}=\frac{-2+2\sqrt{501}}{20} $
| -20x-3=15x-19 | | 18=7y+y | | 51x=35 | | 4x^=3x^+3x= | | 55a=6a+7 | | 2(3y)=0 | | 9x+4/2=2x-7/4 | | 8x-2(x+3)=4 | | 7-2x=x-20 | | 9x-18=8-4x | | 12x+55=199 | | -9/x=3 | | j/9-13=-13 | | 2/5f=4/5=8/5 | | 5(6x+2)-7(3x-5-72=0 | | 2z-8=4z+3 | | 7a+2=3a-5 | | x-x(.20)=41 | | x+.12x=672 | | 3^x+1=55 | | 5+1y/2=11 | | -5x=31/2 | | -5a-3=-28 | | Y=4z+9 | | 3+x-3=3+3 | | 9x+2+8x+1=180 | | 2x+1+4x+19=180 | | 5x-5+2x=10=180 | | 78=12x+18x | | (3x+5)=(x+5) | | Y=6x^2+5x+3 | | T+10=20t |